Here is my publication list; click the button below for a pdf version.
You can find my paper’s lists on ADS, INSPIRE, or the arXiv. My citation count is available here. A bibtex file with these entries is available here and can be scrolled on bibbase. You can also find more information in the news.
Submitted papers
4. Forecasting the population properties of merging black holes.
Viola De Renzis, Francesco Iacovelli, Davide Gerosa, Michele Mancarella, Costantino Pacilio.
arXiv:2410.17325 [astro-ph.HE].
3. A test for LISA foreground Gaussianity and stationarity. I. Galactic white-dwarf binaries.
Riccardo Buscicchio, Antoine Klein, Valeriya Korol, Francesco Di Renzo, Christopher J. Moore, Davide Gerosa, Alessandro Carzaniga.
arXiv:2410.08263 [astro-ph.HE].
2. Which is which? Identification of the two compact objects in gravitational-wave binaries.
Davide Gerosa, Viola De Renzis, Federica Tettoni, Matthew Mould, Alberto Vecchio, Costantino Pacilio.
arXiv:2409.07519 [gr-qc].
1. The last three years: multiband gravitational-wave observations of stellar-mass binary black holes.
Antoine Klein, Geraint Pratten, Riccardo Buscicchio, Patricia Schmidt, Christopher J. Moore, Eliot Finch, Alice Bonino, Lucy M. Thomas, Natalie Williams, Davide Gerosa, Sean McGee, Matt Nicholl and Alberto Vecchio.
arXiv:2204.03423 [gr-qc].
Papers published in peer-reviewed journals
91. Stars or gas? Constraining the hardening processes of massive black-hole binaries with LISA.
Alice Spadaro, Riccardo Buscicchio, David Izquierdo-Villalba, Davide Gerosa, Antoine Klein, Geraint Pratten.
Physical Review D, in press.
arXiv:2409.13011 [astro-ph.HE].
90. Probing AGN jet precession with LISA.
Nathan Steinle, Davide Gerosa, Martin G. H. Krause.
Physical Review D, in press.
arXiv:2403.00066 [astro-ph.HE].
89. Orbital eccentricity in general relativity from catastrophe theory.
Matteo Boschini, Nicholas Loutrel, Davide Gerosa, Giulia Fumagalli.
Physical Review D, in press.
arXiv:2411.00098 [gr-qc].
88. Minimum gas mass accreted by spinning intermediate-mass black holes in stellar clusters.
Konstantinos Kritos, Luca Reali, Davide Gerosa, Emanuele Berti.
Physical Review D 110 (2024) 123017.
arXiv:2409.15439 [astro-ph.HE].
87. Flexible mapping of ringdown amplitudes for nonprecessing binary black holes.
Costantino Pacilio, Swetha Bhagwat, Francesco Nobili, Davide Gerosa.
Physical Review D 110 (2024) 103037.
arXiv:2408.05276 [gr-qc].
86. Classifying binary black holes from Population III stars with the Einstein Telescope: a machine-learning approach.
Filippo Santoliquido, Ulyana Dupletsa, Jacopo Tissino, Marica Branchesi, Francesco Iacovelli, Giuliano Iorio, Michela Mapelli, Davide Gerosa, Jan Harms, Mario Pasquato.
Astronomy & Astrophysics 690 (2024) A362.
arXiv:2404.10048 [astro-ph.HE].
85. Residual eccentricity as a systematic uncertainty on the formation channels of binary black holes.
Giulia Fumagalli, Isobel Romero-Shaw, Davide Gerosa, Viola De Renzis, Konstantinos Kritos, Aleksandra Olejak.
Physical Review D 110 (2024) 063012.
arXiv:2405.14945 [astro-ph.HE].
84. Astrophysical and relativistic modeling of the recoiling black-hole candidate in quasar 3C 186.
Matteo Boschini, Davide Gerosa, Om Sharan Salafia, Massimo Dotti.
Astronomy & Astrophysics 686 (2024) A245.
arXiv:2402.08740 [astro-ph.GA].
83. Quick recipes for gravitational-wave selection effects.
Davide Gerosa, Malvina Bellotti.
Classical and Quantum Gravity 41 (2024) 125002.
arXiv:2404.16930 [astro-ph.HE].
82. pAGN: the one-stop solution for AGN disc modeling.
Daria Gangardt, Alessandro Alberto Trani, Clément Bonnerot, Davide Gerosa.
Monthly Notices of the Royal Astronomical Society, 530 (2024) 3986–3997.
arXiv:2403.00060 [astro-ph.HE].
81. Catalog variance of testing general relativity with gravitational-wave data.
Costantino Pacilio, Davide Gerosa, Swetha Bhagwat.
Physical Review D Letters 109 (2024) L081302.
arXiv:2310.03811 [gr-qc].
80. Calibrating signal-to-noise ratio detection thresholds using gravitational-wave catalogs.
Matthew Mould, Christopher J. Moore, Davide Gerosa.
Physical Review D 109 (2024) 063013.
arXiv:2311.12117 [gr-qc].
79. Spin-eccentricity interplay in merging binary black holes.
Giulia Fumagalli, Davide Gerosa.
Physical Review D 108 (2023) 124055.
arXiv:2310.16893 [gr-qc].
78. Glitch systematics on the observation of massive black-hole binaries with LISA.
Alice Spadaro, Riccardo Buscicchio, Daniele Vetrugno, Antoine Klein, Davide Gerosa, Stefano Vitale, Rita Dolesi, William Joseph Weber, Monica Colpi.
Physical Review D 108 (2023) 123029.
arXiv:2306.03923 [gr-qc].
77. Black-hole mergers in disk-like environments could explain the observed \(q-\chi_{\rm eff}\) correlation.
Alessandro Santini, Davide Gerosa, Roberto Cotesta, Emanuele Berti
arXiv:2308.12998 [astro-ph.HE].
Physical Review D 108 (2023) 083033.
Other press coverage: astrobites.
76. Extending black-hole remnant surrogate models to extreme mass ratios.
Matteo Boschini, Davide Gerosa, Vijay Varma, Cristobal Armaza, Michael Boyle, Marceline S. Bonilla, Andrea Ceja, Yitian Chen, Nils Deppe, Matthew Giesler, Lawrence E. Kidder, Guillermo Lara, Oliver Long, Sizheng Ma, Keefe Mitman, Peter James Nee, Harald P. Pfeiffer, Antoni Ramos-Buades, Mark A. Scheel, Nils L. Vu, and Jooheon Yoo.
Physical Review D 108 (2023) 084015.
arXiv:2307.03435 [gr-qc].
75. One to many: comparing single gravitational-wave events to astrophysical populations.
Matthew Mould, Davide Gerosa, Marco Dall’Amico, Michela Mapelli.
Monthly Notices of the Royal Astronomical Society, 525 (2023) 3986–3997
arXiv:2305.18539 [astro-ph.HE].
74. Efficient multi-timescale dynamics of precessing black-hole binaries.
Davide Gerosa, Giulia Fumagalli, Matthew Mould, Giovanni Cavallotto, Diego Padilla Monroy, Daria Gangardt, Viola De Renzis.
Physical Review D 108 (2023) 024042.
arXiv:2304.04801 [gr-qc].
Open-source code: homepage, repository, documentation.
73. Parameter estimation of binary black holes in the endpoint of the up-down instability.
Viola De Renzis, Davide Gerosa, Matthew Mould, Riccardo Buscicchio,
Lorenzo Zanga.
Physical Review D 108 (2023) 024024.
arXiv:2304.13063 [gr-qc].
72. Inferring, not just detecting: metrics for high-redshift sources observed with third-generation gravitational-wave detectors.
Michele Mancarella, Francesco Iacovelli, Davide Gerosa.
Physical Review D Letters 107 (2023) L101302.
arXiv:2303.16323 [gr-qc].
71. Eccentricity or spin precession? Distinguishing subdominant effects in gravitational-wave data.
Isobel Romero-Shaw, Davide Gerosa, Nicholas Loutrel.
Monthly Notices of the Royal Astronomical Society 519 (2023) 5352–5357.
arXiv:2211.07528 [astro-ph.HE].
70. The Bardeen-Petterson effect, disk breaking, and the spin orientations of supermassive black-hole binaries.
Nathan Steinle, Davide Gerosa.
Monthly Notices of the Royal Astronomical Society 519 (2023) 5031–5042.
arXiv:2211.00044 [astro-ph.HE].
69. Deep learning and Bayesian inference of gravitational-wave populations: hierarchical black-hole mergers.
Matthew Mould, Davide Gerosa, Stephen R. Taylor.
Physical Review D 106 (2022) 103013.
arXiv:2203.03651 [astro-ph.HE].
68. Characterization of merging black holes with two precessing spins.
Viola De Renzis, Davide Gerosa, Geraint Pratten, Patricia Schmidt, Matthew Mould.
Physical Review D 106 (2022) 084040.
arXiv:2207.00030 [gr-qc].
67. Which black hole formed first? Mass-ratio reversal in massive binary stars from gravitational-wave data.
Matthew Mould, Davide Gerosa, Floor S. Broekgaarden, Nathan Steinle.
Monthly Notices of the Royal Astronomical Society 517 (2022) 2738–2745.
arXiv:2205.12329 [astro-ph.HE].
66. The irreducible mass and the horizon area of LIGO’s black holes.
Davide Gerosa, Cecilia Maria Fabbri, Ulrich Sperhake.
Classical and Quantum Gravity 39 (2022) 175008.
arXiv:2202.08848 [gr-qc].
65. Constraining black-hole binary spin precession and nutation with sequential prior conditioning.
Daria Gangardt, Davide Gerosa, Michael Kesden, Viola De Renzis, Nathan Steinle.
Physical Review D 106 (2022) 024019. Erratum: 107 (2023) 109901.
arXiv:2204.00026 [gr-qc].
64. Inferring the properties of a population of compact binaries in presence of selection effects.
Salvatore Vitale, Davide Gerosa, Will M. Farr, Stephen R. Taylor.
Chapter in “Handbook of Gravitational Wave Astronomy“; Springer, Singapore (2022).
arXiv:2007.05579 [astro-ph.IM].
63. Gravitational-wave population inference at past time infinity.
Matthew Mould, Davide Gerosa.
Physical Review D 105 (2022) 024076.
arXiv:2110.05507 [astro-ph.HE].
62. The Bardeen-Petterson effect in accreting supermassive black-hole binaries: disc breaking and critical obliquity.
Rebecca Nealon, Enrico Ragusa, Davide Gerosa, Giovanni Rosotti, Riccardo Barbieri.
Monthly Notices of the Royal Astronomical Society 509 (2022) 5608–5621.
arXiv:2111.08065 [astro-ph.HE].
61. Population-informed priors in gravitational-wave astronomy.
Christopher J. Moore, Davide Gerosa.
Physical Review D 104 (2021) 083008.
arXiv:2108.02462 [gr-qc].
60. Looking for the parents of LIGO’s black holes.
Vishal Baibhav, Emanuele Berti, Davide Gerosa, Matthew Mould, Kaze W. K. Wong.
Physical Review D 104 (2021) 084002.
arXiv:2105.12140 [gr-qc].
59. Modeling the outcome of supernova explosions in binary population synthesis using the stellar compactness.
Maciej Dabrowny, Nicola Giacobbo, Davide Gerosa.
Rendiconti Lincei. Scienze Fisiche e Naturali 32 (2021) 665–673.
arXiv:2106.12541 [astro-ph.HE].
58. Bayesian parameter estimation of stellar-mass black-hole binaries with LISA.
Riccardo Buscicchio, Antoine Klein, Elinore Roebber, Christopher J. Moore, Davide Gerosa, Eliot Finch, Alberto Vecchio.
Physical Review D 104 (2021) 044065.
arXiv:2106.05259 [astro-ph.HE].
57. Hierarchical mergers of stellar-mass black holes and their gravitational-wave signatures.
Davide Gerosa, Maya Fishbach.
Nature Astronomy 5 (2021) 749-760.
arXiv:2105.03439 [astro-ph.HE].
Review article.
Press releases: Birmingham.
Other press coverage: SciTechDaily, techexplorist, sci-news, Media INAF (Italian), globalscience (Italian), futura-sciences (French), europapress (Spanish), la Razon (Spanish), astroblogs (Dutch), phys.org, ScienceDaily, Mirage News Australia, World News Monitor, nanowerk, newsbeezer, SpaceDaily.
56. High mass but low spin: an exclusion region to rule out hierarchical black-hole mergers as a mechanism to populate the pair-instability mass gap.
Davide Gerosa, Nicola Giacobbo, Alberto Vecchio.
Astrophysical Journal, 915 (2021) 56.
arXiv:2104.11247 [astro-ph.HE].
55. Testing general relativity with gravitational-wave catalogs: the insidious nature of waveform systematics.
Christopher J. Moore, Eliot Finch, Riccardo Buscicchio, Davide Gerosa.
iScience 24 (2021) 102577.
arXiv:2103.16486 [gr-qc].
Other press coverage: indiescience, sciencedaily, phys.org, astronomy.com, physicsworld.
54. A taxonomy of black-hole binary spin precession and nutation.
Daria Gangardt, Nathan Steinle, Michael Kesden, Davide Gerosa, Evangelos Stoikos.
Physical Review D 103 (2021) 124026.
arXiv:2103.03894 [gr-qc].
53. A generalized precession parameter \(\chi_{\rm p}\) to interpret gravitational-wave data.
Davide Gerosa, Matthew Mould, Daria Gangardt, Patricia Schmidt, Geraint Pratten, Lucy M. Thomas.
Physical Review D 103 (2021) 064067.
arXiv:2011.11948 [gr-qc].
Open-source code: homepage, repository.
52. Eccentric binary black hole surrogate models for the gravitational waveform and remnant properties: comparable mass, nonspinning case
Tousif Islam, Vijay Varma, Jackie Lodman, Scott E. Field, Gaurav Khanna, Mark A. Scheel, Harald P. Pfeiffer, Davide Gerosa, and Lawrence E. Kidder.
Physical Review D 103 (2021) 064022.
arXiv:2101.11798 [gr-qc].
51. Up-down instability of binary black holes in numerical relativity.
Vijay Varma, Matthew Mould, Davide Gerosa, Mark A. Scheel, Lawrence E. Kidder, Harald P. Pfeiffer.
Physical Review D 103 (2021) 064003.
arXiv:2012.07147 [gr-qc].
Supporting material available here.
50. Massive black hole binary inspiral and spin evolution in a cosmological framework.
Mohammad Sayeb, Laura Blecha, Luke Zoltan Kelley, Davide Gerosa, Michael Kesden, July Thomas.
Monthly Notices of the Royal Astronomical Society 501 (2021) 2531–2546.
arXiv:2006.06647 [astro-ph.GA].
49. Gravitational-wave selection effects using neural-network classifiers.
Davide Gerosa, Geraint Pratten, Alberto Vecchio.
Physical Review D 102 (2020) 103020.
arXiv:2007.06585 [astro-ph.HE].
Open-source code: homepage, repository.
48. Mapping the asymptotic inspiral of precessing binary black holes to their merger remnants.
Luca Reali, Matthew Mould, Davide Gerosa, Vijay Varma.
Classical and Quantum Gravity 37 (2020) 225005.
arXiv:2005.01747 [gr-qc].
47. Astrophysical implications of GW190412 as a remnant of a previous black-hole merger.
Davide Gerosa, Salvatore Vitale, Emanuele Berti.
Physical Review Letters 125 (2020) 101103.
arXiv:2005.04243 [astro-ph.HE].
Press releases: Birmingham, MIT.
Other press coverage: International Business Times, SciTechDaily, VRT (Dutch), notimerica (Spanish), allnewsbuzz, canaltech (Portuguese).
46. Structure of neutron stars in massive scalar-tensor gravity.
Roxana Rosca-Mead, Christopher J. Moore, Ulrich Sperhake, Michalis Agathos, Davide Gerosa.
Symmetry 12 (2020) 1384.
arXiv:2007.14429 [gr-qc].
45. Core collapse in massive scalar-tensor gravity.
Roxana Rosca-Mead, Ulrich Sperhake, Christopher J. Moore, Michalis Agathos, Davide Gerosa, Christian D. Ott.
Physical Review D 102 (2020) 044010.
arXiv:2005.09728 [gr-qc].
44. The mass gap, the spin gap, and the origin of merging binary black holes.
Vishal Baibhav, Davide Gerosa, Emanuele Berti, Kaze W. K. Wong, Thomas Helfer, Matthew Mould.
Physical Review D 102 (2020) 043002.
arXiv:2004.00650 [gr-qc].
43. The Bardeen-Petterson effect in accreting supermassive black-hole binaries: a systematic approach.
Davide Gerosa, Giovanni Rosotti, Riccardo Barbieri.
Monthly Notices of the Royal Astronomical Society 496 (2020) 3060-3075.
arXiv:2004.02894 [astro-ph.GA].
42. Populations of double white dwarfs in Milky Way satellites and their detectability with LISA.
Valeriya Korol, Silvia Toonen, Antoine Klein, Vasily Belokurov, Fiorenzo Vincenzo, Riccardo Buscicchio, Davide Gerosa, Christopher J. Moore, Elinore Roebber, Elena M. Rossi, Alberto Vecchio.
Astronomy & Astrophysics 638 (2020) A153.
arXiv:2002.10462 [astro-ph.GA].
41. Endpoint of the up-down instability in precessing binary black holes.
Matthew Mould, Davide Gerosa.
Physical Review D 101 (2020) 124037.
arXiv:2003.02281 [gr-qc].
Supporting material available here.
40. Black holes in the low mass gap: Implications for gravitational wave observations.
Anuradha Gupta, Davide Gerosa, K. G. Arun, Emanuele Berti, Will Farr, B. S. Sathyaprakash.
Physical Review D 101 (2020) 103036.
arXiv:1909.05804 [gr-qc].
39. Milky Way satellites shining bright in gravitational waves.
Elinore Roebber, Riccardo Buscicchio, Alberto Vecchio, Christopher J. Moore, Antoine Klein, Valeriya Korol, Silvia Toonen, Davide Gerosa, Janna Goldstein, Sebastian M. Gaebel, Tyrone E. Woods.
Astrophysical Journal Letters, 894 (2020) L15.
arXiv:2002.10465 [astro-ph.GA].
38. Evolutionary roads leading to low effective spins, high black hole masses, and O1/O2 rates for LIGO/Virgo binary black holes.
Krzysztof Belczynski, Jakub Klencki, Carl E. Fields, Aleksandra Olejak, Emanuele Berti, Georges Meynet, Christopher L. Fryer, Daniel E. Holz, Richard O’Shaughnessy, Duncan A. Brown, Tomasz Bulik, Sching C. Leung, Ken’ichi Nomoto, Piero Madau, Raphael Hirschi, Etienne Kaiser, Samuel Jones, Samaresh Mondal, Martyna Chruslinska, Paweł Drozda, Davide Gerosa, Zoheyr Doctor, Mirek Giersz, Sylvia Ekström, Cyril Georgy, Abbas Askar, Vishal Baibhav, Daniel Wysocki, T. Natan, Will M. Farr, Grzegorz Wiktorowicz, M. Coleman Miller, Ben Farr, Jean-Pierre Lasota.
Astronomy & Astrophysics 636 (2020) A104.
arXiv:1706.07053 [astro-ph.HE].
37. Amplification of superkicks in black-hole binaries through orbital eccentricity.
Ulrich Sperhake, Roxana Rosca-Mead, Davide Gerosa, Emanuele Berti.
Physical Review D 101 (2020) 024044.
arXiv:1910.01598 [gr-qc].
36. Constraining the fraction of binary black holes formed in isolation and young star clusters with gravitational-wave data.
Yann Bouffanais, Michela Mapelli, Davide Gerosa, Ugo N. Di Carlo, Nicola Giacobbo, Emanuele Berti, Vishal Baibhav.
Astrophysical Journal, 886 (2019) 25.
arXiv:1905.11054 [astro-ph.HE].
35. Machine-learning interpolation of population-synthesis simulations to interpret gravitational-wave observations: a case study.
Kaze W.K. Wong, Davide Gerosa.
Physical Review D 100 (2019) 083015.
arXiv:1909.06373 [astro-ph.HE].
34. Surrogate models for precessing binary black hole simulations with unequal masses.
Vijay Varma, Scott E. Field, Mark A. Scheel, Jonathan Blackman, Davide Gerosa, Leo C. Stein, Lawrence E. Kidder, Harald P. Pfeiffer.
Physical Review Research 1 (2019) 033015.
arXiv:1905.09300 [gr-qc].
33. Gravitational-wave detection rates for compact binaries formed in isolation: LIGO/Virgo O3 and beyond.
Vishal Baibhav, Emanuele Berti, Davide Gerosa, Michela Mapelli, Nicola Giacobbo, Yann Bouffanais, Ugo N. Di Carlo.
Physical Review D 100 (2019) 064060.
arXiv:1906.04197 [gr-qc].
32. Escape speed of stellar clusters from multiple-generation black-hole mergers in the upper mass gap.
Davide Gerosa, Emanuele Berti.
Physical Review D Rapid Communications 100 (2019) 041301R.
arXiv:1906.05295 [astro-ph.HE].
Press release: Birmingham.
Other press coverage: Scientific American, astrobites, interestingengineering, metro.co.uk, Media INAF (Italian), Great Lakes Ledger, sciencealert, sciencetimes, mic.com.
31. Are stellar-mass black-hole binaries too quiet for LISA?
Christopher J. Moore, Davide Gerosa, Antoine Klein.
Monthly Notices of the Royal Astronomical Society Letters 488 (2019) L94–L98.
arXiv:1905.11998 [astro-ph.HE].
30. Optimizing LIGO with LISA forewarnings to improve black-hole spectroscopy.
Rhondale Tso, Davide Gerosa, Yanbei Chen.
Physical Review D 99 (2019) 124043.
arXiv:1807.00075 [gr-qc].
Other press coverage: astrobites.
29. Multiband gravitational-wave event rates and stellar physics.
Davide Gerosa, Sizheng Ma, Kaze W.K. Wong, Emanuele Berti, Richard O’Shaughnessy, Yanbei Chen, Krzysztof Belczynski
Physical Review D 99 (2019) 103004.
arXiv:1902.00021 [astro-ph.HE].
Supporting material available here.
28. Wide nutation: binary black-hole spins repeatedly oscillating from full alignment to full anti-alignment.
Davide Gerosa, Alicia Lima, Emanuele Berti, Ulrich Sperhake, Michael Kesden, Richard O’Shaughnessy.
Classical and Quantum Gravity 36 (2019) 105003.
arXiv:1811.05979 [gr-qc].
Supporting material available here.
27. The binary black hole explorer: on-the-fly visualizations of precessing binary black holes.
Vijay Varma, Leo C. Stein, Davide Gerosa.
Classical and Quantum Gravity 36 (2019) 095007.
arXiv:1811.06552 [astro-ph.HE].
Supporting material available here.
26. Frequency-domain waveform approximants capturing Doppler shifts.
Katie Chamberlain, Christopher J. Moore, Davide Gerosa, Nicolas Yunes.
Physical Review D 99 (2019) 024025.
arXiv:1809.04799 [gr-qc].
25. High-accuracy mass, spin, and recoil predictions of generic black-hole merger remnants.
Vijay Varma, Davide Gerosa, Leo C. Stein, François Hébert, Hao Zhang.
Physical Review Letters 122 (2019) 011101.
arXiv:1809.09125 [gr-qc].
Press release: Caltech, Ole Miss.
Other press coverage: Space Daily, phys.org, longroom, tasnim, europapress (Spanish), Media INAF (video in Italian).
24. Spin orientations of merging black holes formed from the evolution of stellar binaries.
Davide Gerosa, Emanuele Berti, Richard O’Shaughnessy, Krzysztof Belczynski, Michael Kesden, Daniel Wysocki, Wojciech Gladysz.
Physical Review D 98 (2018) 084036.
arXiv:1808.02491 [astro-ph.HE].
Supporting material available here.
23. Mining gravitational-wave catalogs to understand binary stellar evolution: a new hierarchical Bayesian framework.
Stephen R. Taylor, Davide Gerosa.
Physical Review D 98 (2018) 083017.
arXiv:1806.08365 [astro-ph.HE].
Editor’s coverage in APS’s Kaleidoscope.
22. Gravitational-wave astrophysics with effective-spin measurements: asymmetries and selection biases.
Ken K. Y. Ng, Salvatore Vitale, Aaron Zimmerman, Katerina Chatziioannou, Davide Gerosa, Carl-Johan Haster.
Physical Review D 98 (2018) 083007.
arXiv:1805.03046 [gr-qc].
21. Black-hole kicks from numerical-relativity surrogate models.
Davide Gerosa, François Hébert, Leo C. Stein.
Physical Review D 97 (2018) 104049.
arXiv:1802.04276 [gr-qc].
Open-source code: homepage, repository.
20. Explaining LIGO’s observations via isolated binary evolution with natal kicks.
Daniel Wysocki, Davide Gerosa, Richard O’Shaughnessy, Krzysztof Belczynski, Wojciech Gladysz, Emanuele Berti, Michael Kesden, Daniel Holz.
Physical Review D 97 (2018) 043014.
arXiv:1709.01943 [astro-ph.HE].
19. Impact of Bayesian priors on the characterization of binary black hole coalescences.
Salvatore Vitale, Davide Gerosa, Carl-Johan Haster, Katerina Chatziioannou, Aaron Zimmerman.
Physical Review Letters 119 (2017) 251103.
arXiv:1707.04637 [gr-qc].
Posterior sample data release
18. Long-lived inverse chirp signals from core collapse in massive scalar-tensor gravity.
Ulrich Sperhake, Christopher J. Moore, Roxana Rosca, Michalis Agathos, Davide Gerosa, Christian D. Ott.
Physical Review Letters 119 (2017) 201103.
arXiv:1708.03651 [gr-qc].
17. Nutational resonances, transitional precession, and precession-averaged evolution in binary black-hole systems.
Xinyu Zhao, Michael Kesden, Davide Gerosa.
Physical Review D 96 (2017) 024007.
arXiv:1705.02369 [gr-qc].
16. Inferences about supernova physics from gravitational-wave measurements: GW151226 spin misalignment as an indicator of strong black-hole natal kicks.
Richard O’Shaughnessy, Davide Gerosa, Daniel Wysocki.
Physical Review Letters 119 (2017) 011101.
arXiv:1704.03879 [astro-ph.HE].
Press release: Rochester Institute of Technology, Caltech’s tweet.
Editor’s coverage in physics.aps.org.
Other press coverage: IOP’s physicsworld.com, Science Daily, Phys.org, astronomy.com, sciencenews, iflscience.
15. Are merging black holes born from stellar collapse or previous mergers?
Davide Gerosa, Emanuele Berti.
Physical Review D 95 (2017) 124046.
arXiv:1703.06223 [gr-qc].
Selected as PRD Editors’ Suggestion.
Other press coverage: Ars Technica.
14. On the equal-mass limit of precessing black-hole binaries.
Davide Gerosa, Ulrich Sperhake, Jakub Vošmera.
Classical and Quantum Gravity 34 (2017) 064004.
arXiv:1612.05263 [gr-qc].
13. Black-hole kicks as new gravitational-wave observables.
Davide Gerosa, Christopher J. Moore.
Physical Review Letters 117 (2016) 011101.
arXiv:1606.04226 [gr-qc].
Selected as PRL Editors’ Suggestion.
Press releases: Cambridge University, Cambridge Center for Theoretical Cosmology
Other press coverage: Daily Mail, phys.org, Particle Bites, egno.gr (Greek), Daily Galaxy, Register, Media INAF (Italian), IneffableIsland, AstronomyNow, Accademia delle Stelle (Italian), noticiasdelaciencia (Portuguese).
Blog posts on astrobites and particlebites.
TV interview, aired on Cambridge TV.
12. PRECESSION: Dynamics of spinning black-hole binaries with python
Davide Gerosa, Michael Kesden.
Physical Review D 93 (2016) 124066.
arXiv:1605.01067 [astro-ph.HE].
Open-source code: homepage, repository, documentation.
11. Numerical simulations of stellar collapse in scalar-tensor theories of gravity
Davide Gerosa, Ulrich Sperhake, Christian D. Ott.
Classical and Quantum Gravity 33 (2016) 135002.
arXiv:1602.06952 [gr-qc].
Supporting material available here.
10. Distinguishing black-hole spin-orbit resonances by their gravitational wave signatures. II: Full parameter estimation.
Daniele Trifirò, Richard O’Shaughnessy, Davide Gerosa, Emanuele Berti, Michael Kesden, Tyson Littenberg, Ulrich Sperhake.
Physical Review D 93 (2016) 044071.
arXiv:1507.05587 [gr-qc].
9. Precessional instability in binary black holes with aligned spins.
Davide Gerosa, Michael Kesden, Richard O’Shaughnessy, Antoine Klein, Emanuele Berti, Ulrich Sperhake, Daniele Trifirò.
Physical Review Letters 115 (2015) 141102.
arXiv:1506.09116 [gr-qc].
Selected as PRL Editors’ Suggestion.
Supporting material available here.
8. Tensor-multi-scalar theories: relativistic stars and 3+1 decomposition.
Michael Horbatsch, Hector O. Silva, Davide Gerosa, Paolo Pani, Emanuele Berti, Leonardo Gualtieri, Ulrich Sperhake.
Classical and Quantum Gravity 32 (2015) 204001.
arXiv:1505.07462 [gr-qc].
Featured in CQG+. Selected as IOPselect.
7. Multi-timescale analysis of phase transitions in precessing black-hole binaries.
Davide Gerosa, Michael Kesden, Ulrich Sperhake, Emanuele Berti, Richard O’Shaughnessy.
Physical Review D 92 (2015) 064016.
arXiv:1506.03492 [gr-qc].
Supporting material available here.
6. Spin alignment and differential accretion in merging black hole binaries.
Davide Gerosa, Benedetta Veronesi, Giuseppe Lodato, Giovanni Rosotti.
Monthly Notices of the Royal Astronomical Society 451 (2015) 3941-3954.
arXiv:1503.06807 [astro-ph.GA].
5. Effective potentials and morphological transitions for binary black-hole spin precession.
Michael Kesden, Davide Gerosa, Richard O’Shaughnessy, Emanuele Berti, Ulrich Sperhake.
Physical Review Letters 114 (2015) 081103.
arXiv:1411.0674 [gr-qc].
Press releases: Cambridge University, Cambridge Center for Theoretical Cosmology, Ole Miss, UT Dallas.
Other press coverage: Science Daily, phys.org, phys.org (2), Media INAF (Italian), Astroblogs (Dutch), RIA (Russian), Daily News, Science World Report, Tech Times, Tech Times (2), SpaceRef, Space Daily, ECN, R&D, Daily Galaxy, scitechdaily, nanowerk…
Supporting material available here.
4. Missing black holes in brightest cluster galaxies as evidence for the occurrence of superkicks in nature.
Davide Gerosa, Alberto Sesana.
Monthly Notices of the Royal Astronomical Society 446 (2015) 38-55.
arXiv:1405.2072 [astro-ph.GA].
3. Distinguishing black-hole spin-orbit resonances by their gravitational-wave signatures.
Davide Gerosa, Richard O’Shaughnessy, Michael Kesden, Emanuele Berti, Ulrich Sperhake.
Physical Review D 89 (2014) 124025.
arXiv:1403.7147 [gr-qc].
2. Resonant-plane locking and spin alignment in stellar-mass black-hole binaries: a diagnostic of compact-binary formation.
Davide Gerosa, Michael Kesden, Emanuele Berti, Richard O’Shaughnessy, Ulrich Sperhake.
Physical Review D 87 (2013) 10, 104028.
arXiv:1302.4442 [gr-qc].
1. Black hole mergers: do gas discs lead to spin alignment?
Giuseppe Lodato, Davide Gerosa.
Monthly Notices of the Royal Astronomical Society Letters 429 (2013) L30-L34.
arXiv:1211.0284 [astro-ph.CO].
White papers, long-authorlist reviews, conference proceedings, software papers, etc.
12. Waveform modelling for the Laser Interferometer Space Antenna.
Niaesh Afshordi, et al. (105 authors incl. Davide Gerosa).
arXiv:2311.01300 [gr-qc].
11. QLUSTER: quick clusters of merging binary black holes.
Davide Gerosa, Matthew Mould.
Proceedings of the 57th Rencontres de Moriond.
arXiv:2305.04987 [astro-ph.HE].
10. Astrophysics with the Laser Interferometer Space Antenna.
Pau Amaro-Seoane, et al. (155 authors incl. Davide Gerosa).
Living Reviews in Relativity 26 (2023) 2
arXiv:2203.06016 [gr-qc].
9. New horizons for fundamental physics with LISA.
K. G. Arun, et al. (141 authors incl. Davide Gerosa)
Living Reviews in Relativity 24 (2023) 4
arXiv:2205.01597 [gr-qc].
8. Prospects for fundamental physics with LISA.
Enrico Barausse, et al. (322 authors incl. Davide Gerosa).
General Relativity and Gravitation 52 (2020) 8, 81.
arXiv:2001.09793 [gr-qc].
7. Black holes, gravitational waves and fundamental physics: a roadmap.
Leor Barack, et al. (199 authors incl. Davide Gerosa).
Classical and Quantum Gravity 36 (2019) 143001.
arXiv:1806.05195 [gr-qc].
Review article. Editor’s coverage in physicsworld.com.
6. Reanalysis of LIGO black-hole coalescences with alternative prior assumptions.
Davide Gerosa, Salvatore Vitale, Carl-Johan Haster, Katerina Chatziioannou, Aaron Zimmerman.
Proceedings of the International Astronomical Union, 338 (2018), 22-28.
arXiv:1712.06635 [astro-ph.HE].
5. Surprises from the spins: astrophysics and relativity with detections of spinning black-hole mergers.
Davide Gerosa.
Journal of Physics: Conference Series 957 (2018) 1, 012014.
arXiv:1711.10038 [astro-ph.HE].
4. filltex: Automatic queries to ADS and INSPIRE databases to fill LaTex bibliography.
Davide Gerosa, Michele Vallisneri.
The Journal of Open Source Software 2 (2017) 13.
Open-source code: homepage, repository.
3. Testing general relativity with present and future astrophysical observations.
Emanuele Berti, et al. (53 authors incl. Davide Gerosa).
Classical and Quantum Gravity 32 (2015) 243001.
arXiv:1501.07274 [gr-qc].
Review article. See the numbers.
2. Rival families: waveforms from resonant black-hole binaries as probes of their astrophysical formation history.
Davide Gerosa.
Astrophysics and Space Science Proceedings 40 (2015) 137-145.
1. Spin alignment effects in black hole binaries.
Davide Gerosa.
Caltech Undergraduate Research Journal (CURJ) 15:1 (2014) 17-26.