Davide Gerosa

University of Birmingham


Milky Way satellites shining bright in gravitational waves

The LISA data analysis problem is going to be massive: tons of simultaneous sources all together at the same time. In Birmingham we are developing a new scheme to tackle the problem, and here are the first outcomes. We populate satellite galaxies of the Milky Way with double white dwarfs and show that LISA… can actually do it! LISA will detect these guys, tell us which galaxies they come from, etc. It might even discover new small galaxies orbiting the Milky Way! Surprise, surprise, LISA is going to be amazing…

Elinore Roebber, Riccardo Buscicchio, Alberto Vecchio, Christopher J. Moore, Antoine Klein, Valeriya Korol, Silvia Toonen, Davide Gerosa, Janna Goldstein, Sebastian M. Gaebel, Tyrone E. Woods.
arXiv:2002.10465 [astro-ph.GA].

ps. Here is the first half of the story.
ps2. The code still need a name. Suggestions?


Populations of double white dwarfs in Milky Way satellites and their detectability with LISA

The Milky Way, our own Galaxy, is not alone. We’re part of a galaxy cluster, but closer in we have some satellites. The bigger ones are the Large and Small Magellanic Clouds (which unfortunately I’ve never seen because they are in the southern hemisphere) but also other smaller ones: faint groups of stars in the outskirts of the Milky Way. Much like all galaxies, these faint satellites will have white dwarfs, those white dwarf will form binaries, which will be observable by LISA. There’s a new population of gravitational-wave sources there waiting to be discovered!

Valeriya Korol, Silvia Toonen, Antoine Klein, Vasily Belokurov, Fiorenzo Vincenzo, Riccardo Buscicchio, Davide Gerosa, Christopher J. Moore, Elinore Roebber, Elena M. Rossi, Alberto Vecchio.
arXiv:2002.10462 [astro-ph.GA].

ps. The second half of the story is here.