APJ

High mass but low spin: an exclusion region to rule out hierarchical black-hole mergers as a mechanism to populate the pair-instability mass gap

Hierarchical mergers are the new black. LIGO is seeing black holes that are just too big to be there. The reason is that stars, which collapse and produce black holes, do some funny things when they get too massive. Notably, they start to spontaneously produce positrons and electrons instead of keeping their own photons. Long story short: those missing photons make the temperature go up, ignite an explosion that disrupts the core and prevents black-hole formation. This “mass gap” is a solid prediction from our astrophysics friends. In some previous papers, we and other groups pointed out that one can bypass stars and form black holes from previous black holes (and goodbye my dear maximum mass limit!). But now our astrophysics friends are telling us they can also evade the limit with some more elaborate astro-magic (winds, rotation, dredge-up, reaction rates, accretion). Today’s paper is about telling the two apart, with a key prediction: a black hole with large mass but low spin would raise a glass to the astro-wizards.

D. Gerosa, N. Giacobbo, A. Vecchio.
Astrophysical Journal 915 (2021) 56. arXiv:2104.11247 [astro-ph.HE].


Milky Way satellites shining bright in gravitational waves

The LISA data analysis problem is going to be massive: tons of simultaneous sources all together at the same time. In Birmingham we are developing a new scheme to tackle the problem, and here are the first outcomes. We populate satellite galaxies of the Milky Way with double white dwarfs and show that LISA… can actually do it! LISA will detect these guys, tell us which galaxies they come from, etc. It might even discover new small galaxies orbiting the Milky Way! Surprise, surprise, LISA is going to be amazing…

ps. Here is the first half of the story.

ps2. The code still needs a name. Suggestions?

E. Roebber, R. Buscicchio, A. Vecchio, C. J. Moore, A. Klein, V. Korol, S. Toonen, D. Gerosa, J. Goldstein, S. M. Gaebel, T. E. Woods.
Astrophysical Journal 894 (2020) L15. arXiv:2002.10465 [astro-ph.GA].