Davide Gerosa

A generalized precession parameter chi_p to interpret gravitational-wave data

Spin precession is cool, and we want to measure it. In General Relativity, the orbital plane of a binary is not fixed but moves around. This effect is related to the spin of the orbiting black holes and contains a ton of astrophysical information. The question we try to address in this paper is the following: how does one quantify “how much” precession a system has? This is typically done by condensing information into a parameter called \(\chi_{\rm p}\), which is here generalize to include two- spin effects. There are two black holes in a binary and we received numerous complaints from the secondaries: they want to join the gravitational-wave fun!

Davide Gerosa, Matthew Mould, Daria Gangardt, Patricia Schmidt, Geraint Pratten, Lucy M. Thomas.
arXiv:2011.11948 [gr-qc].
Open-source code: homepagerepository.

Comments are closed.