Davide Gerosa

Caltech


Spin orientations of merging black holes formed from the evolution of stellar binaries

Davide Gerosa, Emanuele Berti, Richard O’Shaughnessy, Krzysztof Belczynski, Michael Kesden, Daniel Wysocki, Wojciech Gladysz.
Physical Review D 98 (2018) 084036.
arXiv:1808.02491 [astro-ph.HE].
Supporting material available here.

Today’s paper celebrates the wedding of startrack and precession (the nickname for this project was pretrack 😉 ). We use population synthesis evolution from startrack to predict the parameters of spinning black-hole binaries observed by LIGO. The spin distribution is then propagated from formation to detection using post-Newtonian evolutions from my precession code. The bottom line is that spin measurements can be used to truly reconstruct the binary formation channels, and some specific mechanisms (like mass transfers, tides, natal kicks, supernova’s instabilities etc.). Our database is publicly available (play with it!), as well as a little code to compute gravitational-wave detectabilities.

Supporting material available here.

Update: this is my 25th published paper! That’s silver, right?


Mining gravitational-wave catalogs to understand binary stellar evolution: a new hierarchical bayesian framework.

Stephen R. Taylor, Davide Gerosa.
Physical Review D 98 (2018) 083017.
arXiv:1806.08365 [astro-ph.HE].

Gravitational-wave astronomy is moving. Quickly. In a few years we are going to have large catalogs of many detections, and a whole lot of information to extract from them. Instead of focussing on parameters (masses, spins, redshifts) of single sources, we will want to extract hyperparameters describing physical features of the population (metallicity, natal kicks, common envelope, stellar winds, etc). Here we show how to do this in practice: read our new paper for an amazing journey through hyperlateral cubes, Gaussian process emulators, selection biases, hierarchical modeling and more.

Our tools are publicly available! Here is Steve’s Webpage and our public code.


Gravitational-wave astrophysics with effective-spin measurements: asymmetries and selection biases

Ken K. Y. Ng, Salvatore Vitale, Aaron Zimmerman, Katerina Chatziioannou, Davide Gerosa, Carl-Johan Haster.
Physical Review D 98 (2018) 083007.
arXiv:1805.03046 [gr-qc].

LIGO can measure spins. Well, effective spins actually. These are special combinations of the two spins (magnitude and direction) and the binary mass ratio. There’s a ton of astrophysics that can be done just with this quantity, but one should always be careful. Today’s paper points out a few important shortcomings when dealing with effective spin measurements. Want to know more about asymmetries and selection biases?

ps. You can hardly find a better day to post a paper on the arxiv than May 4th


Black-hole kicks from numerical-relativity surrogate models

Davide Gerosa, François Hébert, Leo C. Stein.
Physical Review D 97 (2018) 104049.
arXiv:1802.04276 [gr-qc].

Surrogate models are fancy interpolation schemes developed to provide accurate (well, really accurate) waveforms directly from numerical relativity simulations. The first surrogate able to model fully precessing systems came up recently (and it’s really an amazing work!). Here we exploit these advances to explore how linear momentum is emitted in generic black-hole mergers, and well as its back-reaction. Black holes get kicked!

Open-source code: homepagerepository.


Explaining LIGO’s observations via isolated binary evolution with natal kicks

Daniel Wysocki, Davide Gerosa, Richard O’Shaughnessy, Krzysztof Belczynski, Wojciech Gladysz, Emanuele Berti, Michael Kesden, Daniel Holz.
Physical Review D 97 (2018) 043014.
arXiv:1709.01943 [astro-ph.HE].

Natal kicks imparted to neutron stars and black holes at birth can be constrained using LIGO data. Kicks cause misalignments between the spins and the orbital angular momentum. Here we compare large banks of population synthesis simulations to LIGO data using hierarchical Bayesian statistics and show that (already with 4 events!) natal kicks are constrained from both above and below. Simulated binaries are produced merging Startrack evolutions to my precession code. More on this very soon…

Update: here it is!


Nutational resonances, transitional precession, and precession-averaged evolution in binary black-hole systems

Xinyu Zhao, Michael Kesden, Davide Gerosa.
Physical Review D 96 (2017) 024007.
arXiv:1705.02369 [gr-qc].

Part of our series of spin precession papers, here we study nutational resonances. Those are configurations where the precession of L about J, and that of the two spins are in resonance with each other. These configurations are very generic (virtually every binary will go through resonances), but their effect on the dynamics seems to be small, unless… unless you end up in transitional precession! Transitional precession (great paper!) turns out to be a very special nutational resonance.


Are merging black holes born from stellar collapse or previous mergers?

Davide Gerosa, Emanuele Berti.
Physical Review D 95 (2017) 124046.
arXiv:1703.06223 [gr-qc].

What if the black holes LIGO sees are the results of a merger? I mean, we see mergers, but maybe those are second-generation ones, and the two merging black holes come from first-generation mergers. Or (more likely…) stellar mass black holes form from stars and only merge once…

Selected as PRD Editors’ Suggestion.
Other press coverage: Ars Technica.