General Relativity works well. But we still want to test it, and I guess that’s because it actually works too well (you know, all those quantum things that don’t really fit, etc). And we want to test it with gravitational-wave data, and not just because it’s the new cool thing to do (though it is!) but also because they gravitational waves give us insight into the strong-field regime of gravity where new things, if they are there at all, should show up. Now, all of this sounds great but, in practice, one has to deal with the actual model used to analyze the data. Errors in these signal models (aka waveforms), which are somewhat inevitable, can trick us into thinking we have seen a deviation from General Relativity. So, before you go out on the street and shout that Einstein was wrong, keep calm and mind your waveform.
Christopher J. Moore, Eliot Finch, Riccardo Buscicchio, Davide Gerosa.
iScience 24 (2021) 102577.
arXiv:2103.16486 [gr-qc].
Other press coverage: indiescience, sciencedaily, phys.org, astronomy.com, physicsworld.
ps. The codename for this paper was SANITY: SystemAtics usiNg populatIons to Test general relativitY.