Davide Gerosa

High mass but low spin: an exclusion region to rule out hierarchical black-hole mergers as a mechanism to populate the pair-instability mass gap

Hierarchical mergers are the new black. LIGO is seeing black holes that are just too big to be there. The reason is that stars, which collapse and produce black holes, do some funny things when they get too massive. Notably, they start to spontaneously produce positrons and electrons instead of keeping their own photons. Long story short: those missing photons make the temperature go up, ignite an explosion that disrupts the core and prevents black-hole formation. This “mass gap” is a solid prediction from our astrophysics friends. In some previous papers, we and other groups pointed out that one can bypass stars and form black holes from previous black holes (and goodbye my dear maximum mass limit!). But now our astrophysics friends are telling us they can also evade the limit with some more elaborate astro-magic (winds, rotation, dredge-up, reaction rates, accretion). Today’s paper is about telling the two apart, with a key prediction: a black hole with large mass but low spin would raise a glass to the astro-wizards.

Davide Gerosa, Nicola Giacobbo, Alberto Vecchio.
Astrophysical Journal, 915 (2021) 56.
arXiv:2104.11247 [astro-ph.HE].

Comments are closed.