Davide Gerosa

Hierarchical mergers of stellar-mass black holes and their gravitational-wave signatures

The quest of finding their astrophysical origin of merging black-hole binaries is now a key open problem in modern astrophysics. Stars are the natural progenitor of black holes: at the end of their lives, the core collapses and leaves behind a compact object. But once those “first-generation” black holes are around, they can potentially meet again and form “second generation” LIGO events. I first got interested in this problem in 2017 and, together with many many others researchers in the community, we explored the consequences of this “hierarchical merger” scenario in terms of both gravitational-wave physics and astrophysical environments. In this Nature Astronomy review article, Maya and I tried to condense all this body of work into a few pages. The result is (we hope) a broad and informed overview of this emerging research strand, with a whopping number of more than 270 citations! Hope you like it.

Davide Gerosa, Maya Fishbach.
Nature Astronomy 5 (2021) 749-760.
arXiv:2105.03439 [astro-ph.HE].
Review article.

Comments are closed.