Davide Gerosa

Constraining black-hole binary spin precession and nutation with sequential prior conditioning

Daria’s new paper is out! (With key contributions from others in the group… This is also Viola’s first paper!).

Here we look at sub-dominant black-hole spin effects in current data from LIGO and Virgo (yeah sorry guys… our black-hole spin obsession goes on). People have looked at spin precession before, but we’re interested in even more subtle things, namely disentangling precession and nutation. This is a tricky business, which is made complicated by the fact that this piece of information is hidden behind other parameters that are easier to measure (say the masses of the two black holes). Our paper is an attempt to formulate and systematically exploit something we called “sequential prior conditioning” (which is: mix&match priors and posteriors in Bayesian stats…). Results are weak today but strong tomorrow.

Daria Gangardt, Davide Gerosa, Michael Kesden, Viola De Renzis, Nathan Steinle.
Physical Review D 106 (2022) 024019.
arXiv:2204.00026 [gr-qc].

Comments are closed.